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Abstract

Methods for name matching, an important
component to support downstream tasks
such as entity linking and entity clustering,
have focused on alphabetic languages, pri-
marily English. In contrast, logogram lan-
guages such as Chinese remain untested.
We evaluate methods for name matching
in Chinese, including both string match-
ing and learning approaches. Our ap-
proach, based on new representations for
Chinese, improves both name matching
and a downstream entity clustering task.

1 Introduction

A key technique in entity disambiguation is name
matching: determining if two mention strings
could refer to the same entity. The challenge
of name matching lies in name variation, which
can be attributed to many factors: nicknames,
aliases, acronyms, and differences in translitera-
tion, among others. In light of these issues, exact
string match can lead to poor results. Numerous
downstream tasks benefit from improved name
matching: entity coreference (Strube et al., 2002),
name transliteration (Knight and Graehl, 1998),
identifying names for mining paraphrases (Barzi-
lay and Lee, 2003), entity linking (Rao et al.,
2013) and entity clustering (Green et al., 2012).

As a result, there have been numerous proposed
name matching methods (Cohen et al., 2003), with
a focus on person names. Despite extensive explo-
ration of this task, most work has focused on Indo-
European languages in general and English in par-
ticular. These languages use alphabets as repre-
sentations of written language. In contrast, other
languages use logograms, which represent a word

or morpheme, the most popular being Chinese
which uses hanzi (汉字). This presents challenges
for name matching: a small number of hanzi repre-
sent an entire name and there are tens of thousands
of hanzi in use. Current methods remain largely
untested in this setting, despite downstream tasks
in Chinese that rely on name matching (Chen et
al., 2010; Cassidy et al., 2011). Martschat et al.
(2012) point out errors in coreference resolution
due to Chinese name matching errors, which sug-
gests that downstream tasks can benefit from im-
provements in Chinese name matching techniques.

This paper presents an analysis of new and ex-
isting approaches to name matching in Chinese.
The goal is to determine whether two Chinese
strings can refer to the same entity (person, orga-
nization, location) based on the strings alone. The
more general task of entity coreference (Soon et
al., 2001), or entity clustering, includes the con-
text of the mentions in determining coreference. In
contrast, standalone name matching modules are
context independent (Andrews et al., 2012; Green
et al., 2012). In addition to showing name match-
ing improvements on newly developed datasets of
matched Chinese name pairs, we show improve-
ments in a downstream Chinese entity clustering
task by using our improved name matching sys-
tem. We call our name matching tool Mingpipe, a
Python package that can be used as a standalone
tool or integrated within a larger system. We re-
lease Mingpipe as well as several datasets to sup-
port further work on this task.1

2 Name Matching Methods

Name matching originated as part of research into
record linkage in databases. Initial work focused

1The code and data for this paper are available at:
https://github.com/hltcoe/mingpipe



on string matching techniques. This work can
be organized into three major categories: 1) Pho-
netic matching methods, e.g. Soundex (Holmes
and McCabe, 2002), double Metaphone (Philips,
2000) etc.; 2) Edit-distance based measures, e.g.
Levenshtein distance (Levenshtein, 1966), Jaro-
Winkler (Porter et al., 1997; Winkler, 1999),
and 3) Token-based similarity, e.g. soft TF-IDF
(Bilenko et al., 2003). Analyses comparing these
approaches have not found consistent improve-
ments of one method over another (Cohen et al.,
2003; Christen, 2006). More recent work has
focused on learning a string matching model on
name pairs, such as probabilistic noisy channel
models (Sukharev et al., 2014; Bilenko et al.,
2003). The advantage of trained models is that,
with sufficient training data, they can be tuned for
specific tasks.

While many NLP tasks rely on name matching,
research on name matching techniques themselves
has not been a major focus within the NLP com-
munity. Most downstream NLP systems have sim-
ply employed a static edit distance module to de-
cide whether two names can be matched (Chen et
al., 2010; Cassidy et al., 2011; Martschat et al.,
2012). An exception is work on training finite
state transducers for edit distance metrics (Ristad
and Yianilos, 1998; Bouchard-Côté et al., 2008;
Dreyer et al., 2008; Cotterell et al., 2014). More
recently, Andrews et al. (2012) presented a phylo-
genetic model of string variation using transducers
that applies to pairs of names string (supervised)
and unpaired collections (unsupervised).

Beyond name matching in a single language,
several papers have considered cross lingual name
matching, where name strings are drawn from
two different languages, such as matching Arabic
names (El-Shishtawy, 2013) with English (Free-
man et al., 2006; Green et al., 2012). Addition-
ally, name matching has been used as a component
in cross language entity linking (McNamee et al.,
2011a; McNamee et al., 2011b) and cross lingual
entity clustering (Green et al., 2012). However,
little work has focused on logograms, with the ex-
ception of Cheng et al. (2011). As we will demon-
strate in § 3, there are special challenges caused by
the logogram nature of Chinese. We believe this is
the first evaluation of Chinese name matching.

3 Challenges
Numerous factors cause name variations, includ-
ing abbreviations, morphological derivations, his-

Examples Notes
许历农 v.s. 許歷農 simplified v.s. traditional
東盟 v.s. Abbreviation and traditional
东南亚国家联盟 v.s. simplified
亚的斯亚贝巴 v.s. Transliteration of Addis Ababa
阿迪斯阿貝巴 in Mainland and Taiwan. Dif-
/ i2·ti·s1·i2·bei·b2 / ferent hanzi, similar pronuncia-
v.s. / 2·ti·s1·2·bei·b2 / tions.
佛罗伦萨 v.s. 翡冷翠 Transliteration of Florence in
/ fo·luo·lu@n·s2 / Mainland and Hong Kong. Dif-
v.s. / fei·lEN·tsh8Y / ferent writing and dialects.
鲁弗斯·汉弗莱 v.s. 韓魯弗 Transliteration of Humphrey
/ lu·fu·sW·xan·fu·laI / Rufus in Mainland and Hong
v.s. / xan·lu·fu / Kong. The first uses a literal

transliteration, while the second
does not. Both reverse the name
order (consistent with Chinese
names) and change the surname
to sound Chinese.

Table 1: Challenges in Chinese name matching.

torical sound or spelling change, loanword for-
mation, translation, transliteration, or transcription
error (Andrews et al., 2012). In addition to all the
above factors, Chinese name matching presents
unique challenges (Table 1):

• There are more than 50k Chinese characters.
This can create a large number of parameters
in character edit models, which can compli-
cate parameter estimation.

• Chinese characters represent morphemes, not
sounds. Many characters can share a sin-
gle pronunciation2, and many characters have
similar sounds3. This causes typos (mistak-
ing characters with the same pronunciation)
and introduces variability in transliteration
(different characters chosen to represent the
same sound).

• Chinese has two writing systems (simplified,
traditional) and two major dialects (Man-
darin, Cantonese), with different pairings in
different regions (see Table 2 for the three
dominant regional combinations.) This has a
significant impact on loanwords and translit-
erations.

2486 characters are pronounced / tCi / (regardless of tone).
3e.g. 庄 and 张 (different orthography) are pronounced

similar (/tùuAN/ and /tùAN /).



Region Writing System Dialect
Hong Kong Traditional Cantonese
Mainland Simplified Mandarin
Taiwan Traditional Mandarin

Table 2: Regional variations for Chinese writing
and dialect.

4 Methods

We evaluate several name matching methods,
representative of the major approaches to name
matching described above.

String Matching We consider two common
string matching algorithms: Levenshtein and Jaro-
Winkler. However, because of the issues men-
tioned above we expect these to perform poorly
when applied to Chinese strings. We consider sev-
eral transformations to improve these methods.

First, we map all strings to a single writing sys-
tem: simplified. This is straightforward since tra-
ditional Chinese characters have a many-to-one
mapping to simplified characters. Second, we con-
sider a pronunciation based representation. We
convert characters to pinyin4, the official pho-
netic system (and ISO standard) for transcribing
Mandarin pronunciations into the Latin alphabet.
While pinyin is a common representation used in
Chinese entity disambiguation work (Feng et al.,
2004; Jiang et al., 2007), the pinyin for an en-
tire entity is typically concatenated and treated
as a single string (“string-pinyin”). However, the
pinyin string itself has internal structure that may
be useful for name matching. We consider two
new pinyin representations. Since each Chinese
character corresponds to a pinyin, we take each
pinyin as a token corresponding to the Chinese
character. We call this “character-pinyin”. Addi-
tionally, every Mandarin syllable (represented by
a pinyin) can be spelled with a combination of an
initial and a final segment. Therefore, we split
each pinyin token further into the initial and final
segment. We call this “segmented-pinyin”5.

Transducers We next consider methods that can
be trained on available Chinese name pairs. Trans-
ducers are common choices for learning edit dis-

4Hong Kong has a romanization scheme more suitable for
Cantonese, but we found no improvements over using pinyin.
Therefore, for simplicity we use pinyin throughout.

5For example, the pinyin for 张 is segmented into / zh /
and / ang /.

tance metrics for strings, and they perform bet-
ter than string similarity (Ristad and Yianilos,
1998; Andrews et al., 2012; Cotterell et al., 2014).
We use the probabilistic transducer of Cotterell
et al. (2014) to learn a stochastic edit distance.
The model represent the conditional probability
p(y|x; θ), where y is a generated string based on
editing x according to parameters θ. At each
position xi, one of four actions (copy, substi-
tute, insert, delete) are taken to generate charac-
ter yj . The probability of each action depends
on the string to the left of xi (x(i−N1):i), the
string to the right of xi (xi:(i+N2)), and gener-
ated string to the left of yj (y(j−N3):j). The vari-
ables N1, N2, N3 are the context size. Note that
characters to the right of yj are excluded as they
are not yet generated. Training maximizes the
observed data log-likelihood and EM is used to
marginalize over the latent edit actions. Since the
large number of Chinese characters make param-
eter estimation prohibitive, we only train trans-
ducers on the three pinyin representations: string-
pinyin (28 characters), character-pinyin (384 char-
acters), segmented-pinyin (59 characters).

Name Matching as Classification An alternate
learning formulation considers name matching as
a classification task (Mayfield et al., 2009; Zhang
et al., 2010; Green et al., 2012). Each string pair
is an instance: a positive classification means that
two strings can refer to the same name. This al-
lows for arbitrary and global features of the two
strings. We use an SVM with a linear kernel.

To learn possible edit rules for Chinese names
we add features for pairs of n-grams. For each
string, we extract all n-grams (n=1,2,3) and align
n-grams between strings using the Hungarian al-
gorithm.6 Features correspond to the aligned n-
gram pairs, as well as the unaligned n-grams.
To reduce the number of parameters, we only
include features which appear in positive train-
ing examples. These features are generated for
two string representations: the simplified Chinese
string (simplified n-grams) and a pinyin repre-
sentation (pinyin n-grams), so that we can in-
corporate both orthographic features and phonetic
features. We separately select the best perform-
ing pinyin representation (string-pinyin, character-
pinyin, segmented-pinyin) on development data

6We found this performed much better than directly align-
ing characters or tokens. We also tried n-gram TF-IDF cosine
similarity, but it degraded results (Cohen et al., 2003).



Feature Type Number of Features
Simplified n-grams ~10k

Pinyin n-grams ~9k
Jaccard similarity 6 × 10
TF-IDF similarity 2 × 10

Levenshtein distance 2 × 10
Other 7

Table 3: Features for SVM learning.

for each dataset.
We measure Jaccard similarity between the

two strings separately for 1,2,3-grams for each
string representation. An additional feature in-
dicates no n-gram overlap. The best performing
Levenshtein distance metric is included as a fea-
ture. Finally, we include other features for several
name properties: the difference in character length
and two indicators as to whether the first character
of the two strings match and if its a common Chi-
nese last name. Real valued features are binarized.

Table 3 lists the feature templates we used in
our SVM model and the corresponding number of
features.

5 Experiments

5.1 Dataset

We constructed two datasets from Wikipedia.
REDIRECT: We extracted webpage redirects

from Chinese Wikipedia pages that correspond to
entities (person, organization, location); the page
type is indicated in the page’s metadata. Redi-
rect links indicate queries that all lead to the
same page, such as “Barack Hussein Obama” and
“Barack Obama”. To remove redirects that are not
entities (e.g. “44th president”) we removed entries
that contain numerals and Latin characters, as well
as names that contain certain keywords.7 The fi-
nal dataset contains 13,730 pairs of person names,
10,686 organizations and 5,152 locations, divided
into 3

5 train, 1
5 development and 1

5 test.
NAME GROUPS: Chinese Wikipedia contains a

handcrafted mapping between the entity name and
various transliterations,8 including for Mainland,
Hong Kong and Taiwan. We created two datasets:
Mainland-Hong Kong (1288 people pairs, 357 lo-
cations, 177 organizations), and Mainland-Taiwan
(1500 people, 439 locations, 112 organizations).
Data proportions are split as in REDIRECT.

7Entries that contain列表(list),代表(representative) ,运
动 (movement),问题 (issue) and维基 (wikipedia).

8http://zh.wikipedia.org/wiki/Template:CGroup

Method Character prec@1 prec@3 MRR

Levenshtein
original 0.773 0.838 0.821

simplified 0.816 0.872 0.856
string-pinyin 0.743 0.844 0.811

character-pinyin 0.824 0.885 0.866
segment-pinyin 0.797 0.877 0.849

Jaro-Winkler
original 0.690 0.792 0.767

simplified 0.741 0.821 0.803
string-pinyin 0.741 0.818 0.800

character-pinyin 0.751 0.831 0.813
segment-pinyin 0.753 0.821 0.808

Table 4: String matching on development data.

5.2 Evaluation

We evaluated performance on a ranking task (the
setting of Andrews et al. (2012)). In each instance,
the algorithm was given a query and a set of 11
names from which to select the best match. The
11 names included a matching name as well as 10
other names with some character overlap with the
query that are randomly chose from the same data
split. We evaluate using precision@1,3 and mean
reciprocal rank (MRR). Classifiers were trained
on the true pairs (positive) and negative examples
constructed by pairing a name with 10 other names
that have some character overlap with it. The two
SVM parameters (the regularizer co-efficient C
and the instance weight w for positive examples),
as well as the best pinyin representation, were se-
lected using grid search on dev data.

Results For string matching methods, simplified
characters improve over the original characters for
both Levenshtein and Jaro-Winkler (Table 4). Sur-
prisingly, pinyin does not help over the simpli-
fied characters. Segmented pinyin improved over
pinyin but did not do as well as the simplified char-
acters. Our method of character pinyin performed
the best overall, because it utilizes the phonetic
information the pinyin encodes: all the different
characters that have the same pronunciation are
reduced to the same pinyin representation. Over
all the representations, Levenshtein outperformed
Jaro-Winkler, consistent with previous work (Co-
hen et al., 2003).

Compared to the best string matching method
(Levenshtein over pinyin characters), the trans-
ducer improves for the two name group datasets
but does worse on REDIRECT (Table 5). The
heterogeneous nature of REDIRECT, including
variation from aliases, nicknames, and long-
distance re-ordering, may confuse the trans-
ducer. The SVM does best overall, improv-
ing for all datasets over string matching and



Method Dataset prec@1 prec@3 MRR

Levenshtein
REDIRECT 0.820 0.868 0.859

Mainland-Taiwan 0.867 0.903 0.897
Mainland-Hong Kong 0.873 0.937 0.911

Transducer
REDIRECT 0.767 0.873 0.833

Mainland-Taiwan 0.889 0.938 0.921

Mainland-Hong Kong 0.925(∗) 0.989(∗) 0.954(∗)

SVM
REDIRECT 0.888(∗∗) 0.948(∗∗) 0.924(∗∗)

Mainland-Taiwan 0.926 0.966(∗∗) 0.951(∗)

Mainland-Hong Kongs 0.882 0.972 0.928

Table 5: Results on test data. * better than
Levenshtein; ** better than all other methods

(p = 0.05)
Features Datasets

REDIRECT Name Groups
ALL 0.921 0.966

- Jaccard similariy 0.908 0.929
- Levenshtein 0.919 0.956

- Simplified pairs 0.918 0.965
- Pinyin pairs 0.920 0.960

- Others 0.921 0.962

Table 6: Ablation experiments on SVM features

tying or beating the transducer. Different
pinyin representations (combined with the sim-
plified representation) worked best on differ-
ent datasets: character-pinyin for REDIRECT,
segmented-pinyin for Mainland-Hongkong and
string-pinyin for Mainland-Taiwan. To understand
how the features for SVM affect the final results,
we conduct ablation tests for different group of
features when trained on person names (only) for
each dataset (Table 6). Overall, Jaccard features
are the most effective.

Error Analysis We annotated 100 randomly
sampled REDIRECT development pairs incorrectly
classified by the SVM. We found three major types
of errors. 1) Matches requiring external knowl-
edge (43% of errors), where there were nicknames
or aliases. In these cases, the given name strings
are insufficient for determining the correct an-
swer. These types of errors are typically han-
dled using alias lists. 2) Transliteration confusions
(13%) resulting from different dialects, transliter-
ation versus translation, or only part of a name be-
ing transliterated. 3) Noisy data (19%): Wikipedia
redirects include names in other languages (e.g.
Japanese, Korean) or orthographically identical
strings for different entities. Finally, 25% of the
time the system simply got the wrong answer,
Many of these cases are acronyms.

5.3 Entity Clustering
We evaluate the impact of our improved name
matching on a downstream task: entity clustering

Method Dev Test
Precision Recall F1 Precision Recall F1

Exact match 84.55 57.46 68.42 63.95 65.44 64.69
Jaro-winkler 84.87 58.35 69.15 70.79 66.21 68.42
Levenshtein 83.16 61.13 70.46 69.56 67.27 68.40
Transducer 90.33 74.92 81.90 73.59 63.70 68.29

SVM 90.05 63.90 74.75 74.33 67.60 70.81

Table 7: Results on Chinese entity clustering.

(cross document coreference resolution), where
the goal is identify co-referent named mentions
across documents. Only a few studies have con-
sidered Chinese entity clustering (Chen and Mar-
tin, 2007), including the TAC KBP shared task,
which has included clustering Chinese NIL men-
tions (Ji et al., 2011). We construct an entity clus-
tering dataset from the TAC KBP entity linking
data. All of the 2012 Chinese data is used as de-
velopment, and the 2013 data as test. We use the
system of Green et al. (2012), which allows for
the inclusion of arbitrary name matching metrics.
We follow their setup for training and evaluation
(B3) and use TF-IDF context features. We tune
the clustering cutoff for their hierarchical model,
as well as the name matching threshold on the de-
velopment data. For the trainable name matching
methods (transducer, SVM) we train the methods
on the development data using cross-validation, as
well as tuning the representations and model pa-
rameters. We include an exact match baseline.

Table 7 shows that on test data, our best method
(SVM) improves over all previous methods by
over 2 points. The transducer makes strong gains
on dev but not test, suggesting that parameter tun-
ing overfit. These results demonstrate the down-
stream benefits of improved name matching.

6 Conclusion

Our results suggest several research directions.
The remaining errors could be addressed with ad-
ditional resources. Alias lists could be learned
from data or derived from existing resources.
Since the best pinyin representation varies by
dataset, work could automatically determine the
most effective representation, which may include
determining the type of variation present in the
proposed pair, as well as the associated dialect.

Our name matching tool, Mingpipe, is imple-
mented as a Python library. We make Mingpipe
and our datasets available to aid future research on
this topic.9

9https://github.com/hltcoe/mingpipe
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